Accelerated dual-averaging primal–dual method for composite convex minimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Descent Method for Convex Composite Minimization

In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh [5] to solving nonsmooth and strongly convex composite problems. We prove that the resulting algorithm, GeoPG, converges with a linear rate (1− 1/√κ), thus achieves the optimal rate among first-order methods, where κ is the condition number of the problem. Numerical results on linear regression and ...

متن کامل

Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization

In this paper, we develop a new accelerated stochastic gradient method for efficiently solving the convex regularized empirical risk minimization problem in mini-batch settings. The use of mini-batches is becoming a golden standard in the machine learning community, because mini-batch settings stabilize the gradient estimate and can easily make good use of parallel computing. The core of our pr...

متن کامل

Supplementary Material: Geometric Descent Method for Convex Composite Minimization

We argue that the geometric intuition of GeoPG is still clear. Note that we are still constructing two balls that contain x∗ and shrink at the same absolute amount. In GeoPG, since we assume that the smooth function f is strongly convex, we naturally have one ball that contains x∗, and this ball is related to the proximal gradient Gt, instead of the gradient due to the presence of the nonsmooth...

متن کامل

Canonical Primal-Dual Method for Solving Non-convex Minimization Problems

A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...

متن کامل

Stochastic Three-Composite Convex Minimization

We propose a stochastic optimization method for the minimization of the sum of three convex functions, one of which has Lipschitz continuous gradient as well as restricted strong convexity. Our approach is most suitable in the setting where it is computationally advantageous to process smooth term in the decomposition with its stochastic gradient estimate and the other two functions separately ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Methods and Software

سال: 2020

ISSN: 1055-6788,1029-4937

DOI: 10.1080/10556788.2020.1713779